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Introduction
With the rise of the internet and net-banking, card transactions are common, everyday occurrences to 
many citizens and companies in the world today.  Though, as commonplace as these transactions may 
be, they simultaneously have the potential to wreak havoc on the financial system and lives of those 
impacted by them.  As such, identifying fraudulent transactions is an important area of study for banks 
and financial companies in order to protect themselves and their users from disaster.  This is especially 
important as many institutions have hundreds or thousands of transactions each day.  Think of stock 
trading and investment companies for example, managing millions of accounts.

By obtaining a dataset, courtesy of Kaggle (https://www.kaggle.com/mlg-ulb/creditcardfraud/home), 
consisting of credit card transaction data by European credit cards in 2013, we analyze various 
approaches for detection of fraudulent transactions.  We investigate the application of machine learning
algorithms in order to develop a classification system that can distinguish between fraudulent and non-
fraudulent transactions.

Our solution is to use and analyze two Support Vector Machine (SVM) classifiers – linear, primal SVM
and non-linear, dual SVM classifiers. Hence, we developed a binary classifier – fraudulent vs. non-
fraudulent.  In this process, we trim the data to a computable size, train the classifiers, and tune 
hyperparameter variables (values we may adjust to produce a better result).

First, we transform our dataset into a usable size.  Next, we present visualizations of the input data.  
Then, we perform hyperparameter tuning.  Last, we discuss our results and conclude this report.
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Data transformation
Given the large size of our dataset (~300,000 transactions), we obtain a smaller sample in order to train 
our classification in a reasonable amount of time and without over-fitting the classifier to our data.

There are significantly fewer fraudulent data points in this dataset (0.17%), so taking a simple random 
sample would leave us with very few fraudulent transactions as well as contribute to over-fitting.  
Hence, we have decided to select all of the fraudulent transactions as well as a small subset of normal 
transactions.  By doing this, we hope to build a strong classifier well trained at detecting fraudulent 
transactions.  While this does not reflect the true proportion of such transactions in the real world, 
taking advantage of all of the fraudulent transactions will help us build a better classifier. We take a 
total of 1000 transactions (from the ~300,000), out of which 492 transactions are fraudulent and 508  
are non-fraudulent.

Does the size of our subset affect our results?  To determine this, we have also analyzed the effects of 
our training data through k-fold cross validation. Hence, we have two more datasets, one of 250 
samples and another of 500 samples.

To summarize, our sample files include:

1. 250.csv
2. 500.csv
3. 1000.csv

Shuffling and Cleaning Data

The non-fraudulent samples will be randomly selected from the entire data set. Then, from this 1000 
point sample set, we select a random subset of 500 points (250 from each class) and a random subset of
250 points (125 from each class). 

We first perform an initial filtering of the 284,807 samples to obtain a set of 1000 samples where 492 
of them are fraudulent and the remaining 508 are non-fraudulent.  The initial filtering procedure is 
implemented in the python scripts getSamples.py followed by shuffleData.py.

getSamples.py generates a list of 508 random numbers representing different points.  Then, it traverses 
all 284,807 points, selecting the 508 randomly chosen non-fraudulent points as well as the 492 marked 
fraudulent points.

shuffleData.py performs additional tuning from the selected subset.  This includes transformations such
as changing the values of the fraudulence classifier from 0s and 1s into 1s and -1s.  This file also 
shuffles the points to produce a more random ordering than was left from the initial selection process. A
similar process is performed for the 500 and 250 point subsets.

In summary:

1. A sample of 1000 points, 492 fraudulent and 508 non-fraudulent, are obtained.



2. These points are shuffled and finally stored in 1000.csv in our dataset folder. This is the frozen 
dataset that we plan on using for the rest of our analysis.

These steps are also followed for the 500 point and 250 point samples.

Note on Loading Data

We use the function "getData" to load input, specified by the filename. As we reduce the dataset, we 
use the file /dataset/1000.csv.

To use the function:

import getData

X, y = getData(<filename>)

For replicating results and performing tests, please perform the following. 

In a Python console, run:

import project

import getData

X, y = getData.getXY("../dataset/1000.csv")

# use functions such as project.makePCAGraph(X, y)



Visualizing input data
Because our data points possess a significant number of features (30 features), we employ principal 
component analysis in order to visualize the data.  This allows us to display data points in two 
dimensions, convenient for a graphical representation.

Principal component analysis

Figure 1: Orange – Non-Fraudulent data points, and Blue – Fraudulent points. 

The graph shows the projected data on the first two principal components. The graph depicts some 
separation or clustering of the two sets of samples.

To replicate results, use:

project.makePCAGraph(X, y)

We decided to perform Myopic Forward Fitting on our set of 30 features to determine if there were 
dominant features useful for classification of the data and for best visualizing the data.  The two 
features ranked most important were features 0 and 3. Surprisingly, feature 0, which we know to be the 
time of the transactions, seems to be rather important. This is in contrast to our initial hypothesis that 
time would not be useful in classifying the fraudulence of transactions.  Feature 14 is the third most 
important feature, and, when plotted against feature 3, results in an interesting visualization of the data.

In regards to our data, it should be noted that feature 0 (time) is defined as the “number of seconds 
elapsed between a transaction and the first transaction in the dataset” (From the description of the 
dataset online)



Figure 2: Plot of feature 0 (x axis) vs feature 3 (y axis).
“-” → Fraudulent Transactions

“+” → Non-fraudulent Transactions

Figure 3: Plot of feature 3 (x axis) vs feature 14 (y axis).  Although producing a slightly lower accuracy
score, plotting features 3 vs 14 gives a good visualization of the clumping of non-fraudulent data

points.  Many of the fraudulent points are separable from non-fraudulent transactions.
“-” → Fraudulent Transactions

“+” → Non-fraudulent Transactions



Outline for hyper parameter tuning and testing procedures

Hyperparameter tuning

Primal SVM

We will use linear primal svm for data classification model building. To do this, we will utilize the 
inbuilt machine learning library for the Python programming language named Scikit-learn. Specifically,
the function svm.LinearSVC with dual set to false will be used.

To run the code and find errors, you can use our kfoldcv.py function, with the appropriate keyword 
arguments. Details will be provided below.

Dual SVM

We also use radial basis kernel dual svm for non-linear data classification and model building. Again, 
Scikit-learn will be used here.

k Folds Cross-Validation

We have implemented a run function in kfoldcv.py which performs our k-fold cross validation, 
returning an array z containing the error percentages for each trial.

Primal SVM

Each step of our training process utilizes our three subsets of the data (the subsets of 250 points, 500 
points, and 1000 points) to see if the sample size made a difference in any of the results.  The following
graphs will color code these samples. 



Starting with the Primal SVM method, we work through our training and testing process. We test 4 
different values for the hyperparameter C: 0.01, 0.1, 1.0, and 10.

Note: Tabular format of graph data is available in the separate file titled ‘Appendix’ as well as sample 
output that yielded the tabular data.  Graphs were generated with the spreadsheet program LibreOffice
Calc from the data we collected.

The value of C did not have too large of an impact on the error output.  The error for a C value of 0.1 
was a bit less than 0.01 and about the same as 1 and 10. These results are fairly consistent across the 
sample sizes with slightly larger error for the 250 sample size.  The smaller sample may not have 
enough points to effectively classify the data when compared to the larger samples. Since the C value 
does not impact the results to a large degree, we deduce that the data may be linearly separable.

We also track the running time of the algorithm to compare the trade-off between the error and the 
hyperparameter.



Increasing the value of the hyperparameter, although not improving our error values, does increase the 
overall time for the algorithm.  For this reason, we felt that a C value of 0.1 is our best option as it 
minimizes both the running time and error results.

With a C value chosen, we move on to optimizing the value of k, the number of folds in our cross 
validation.  We test k values of 2, 5, and 10.

The error rates are fairly consistent across the number of folds.  With this information, we know that 
when working with Primal SVM for classifying our data, we should use a C value of 0.1 and any 
number of folds.

Dual SVM

Moving on to the Dual SVM method, we have additional parameters to test.  To avoid having to work 
with x^4 or x^5 parameter combinations, we validate the best value of one parameter before moving 
onto the next and the next.  Starting with C, we chose reasonable values of gamma (1e-7) and k (5 
folds) that did result in long run times or unreasonable error values.  We test values of C starting at 0.1, 
then increasing by powers of 10 until reaching 1,000,000 (1e6).  Values of C between 10,000 and 1 are 
omitted, but 0.1 has been left in to show the relative error values.

Note: Tabular format of graph data is available in the separate file titled ‘Appendix’ as well as sample 
output that yielded the tabular data.



A C value of 1e5 gives the best error results at just less than 1e4 and 1e6.  Compared to Primal SVM, 
the 1000 point data set seems to perform significantly better than the 500 point data set.  This raises 
initial concerns about potential over-fitting to the data.  As running time is also a concern, we also 
measure these values and plot them for analysis.

For viewing purposes, the time taken has been transformed logarithmically (base 10).  Although it 
gives a much better error rate in testing, the 1000 point data set takes around a minute and a half for its 
best C value of 1e5.  This is much larger than the 500 point data set but still reasonable to work with. 
The time taken for an even larger sample to train the data would likely be a concern in a real world 
scenario.



With a C value chosen of 1e5, we move on to selecting an optimal Gamma value.  The best values of 
Gamma are found to be fairly small. We will show data for 1e-9, 1e-8, 1e-7, and 1e-6.

Similar to testing for C, the 1000 point sample performs better than the smaller samples when 
comparing the error rates.  Of these tested values and utilizing our chosen C value of 1e5, Gamma 
value of 1e-8 produces the best results, beating out its neighboring values of 1e-9 and 1e-7.

In regards to time, our best value of 1e-8 takes longer for all three of our data subsets.  Again, the time 
scale has been transformed logarithmically.  Interestingly, the two adjacent gamma values tested both 
take less time in their computations than our best choice 1e-8 at around two minutes.



After selecting both C and Gamma, we experiment with different values of k, the number of folds in 
our cross-validation.  As with the Primal SVM, we test values 2, 5, and 10.

However, unlike Primal SVM, the number of folds makes more of a difference on the error values.  
Using 10 folds yields the best results. We hypothesize that more folds may produce even lower error 
values, but increasing folds beyond 10 produces a significant hindrance in run-time.  For this reason, 
we recommend sticking to a lower fold count of 10 or 5.

In summary, the best values for the Dual SVM parameters are 1e5 for C, 1e-8 for gamma, and 10 folds 
(k).



Results

Results on k-fold cross validation procedures and hyper parameter tuning

Algorithm 1 (Linear, Primal SVM):

C (regularization parameter): 0.1

Fold size selected for k-fold cross validation: 5

Size Error

250 9.6

500 5.8

1000 6.4

Algorithm 2 (Non-linear, Dual SVM):

C (regularization parameter): 100000

Gamma for radial basis kernel: 0.00000001

Fold size selected for k-fold cross validation: 5

Size Error

250 21.6

500 15.2

1000 10.3



Performance Measures

Algorithm 1 (Linear, Primal SVM):

Predicted

Non-fraudulent 
(+1)

Fraudulent 
(-1)

Actual

Non-fraudulent
(+1)

True Positive = 503 False Negative = 5

Fraudulent (-1) False Positive = 60
True Negative =

432

Table: Performance on same dataset with primal svm

Accuracy: 0.935
Precision: 
0.893428063943
Recall: 
0.990157480315
F1 Score: 
0.939309056956

Algorithm 2 (Non-linear, Dual SVM):

Predicted

Non-fraudulent 
(+1)

Fraudulent 
(-1)

Actual

Non-fraudulent
(+1)

True Positive = 505 False Negative = 3

Fraudulent (-1) False Positive = 33
True Negative =

459

Table: Performance on same dataset with dual svm

Accuracy: 0.964
Precision: 
0.938661710037
Recall: 
0.994094488189
F1 Score: 
0.965583173996



Predicted

Non-fraudulent 
(+1)

Fraudulent 
(-1)

Actual

Non-fraudulent
(+1)

True Positive = 245 False Negative = 5

Fraudulent  (-1) False Positive = 20
True Negative =

222

Table: Performance on half testing and half training with Primal SVM, C=0.1

Conclusion
From our results, we determine that we can successfully apply a classification algorithm for fraudulent 
and non-fraudulent transactions.  The error for the Linear/Primal SVM is smaller than the Non-Linear/
Dual SVM.  In addition, the former takes significantly less time to run.  This allows us to conclude that 
a Linear classifier is a better fit for this use case.

In the real world, False Negatives (in which a transaction is incorrectly believed to be real when it was 
actually fraudulent) are a significant concern as people may be scammed out of thousands or millions 
of dollars.  From our results, we not that our classifier produces a very small False Negative error ratio 
and conclude that we have produced a beneficial and rather safe classifier.

The number of False Positives is also rather low.  Although being wary of transactions may produce a 
few extra alerts to users, it will also make it seem that our system is doing work to protect them from 
fraud.  This benefit should outweigh the annoyance of verifying with customers if their purchases are 
accurate.

Appendix

Data collection

The 1eX format refers to some number times 10X power.



Primal SVM - Tuning C

N C Folds Error (%) Time (s)

1000 0.01 5 6.5 1.980

500 0.01 5 6.4 1.980

250 0.01 5 9.2 1.969

1000 0.1 5 6.4 2.160

500 0.1 5 5.8 2.057

250 0.1 5 9.6 2.035

1000 1.0 5 6.4 2.099

500 1.0 5 5.8 2.024

250 1.0 5 9.6 1.966

1000 10 5 6.4 2.193

500 10 5 5.8 2.078

250 10 5 9.6 1.967

Primal SVM - Tuning (k) Folds

N C Folds Error (%) Time (s)

1000 0.1 2 6.3 2.079

500 0.1 2 5.8 2.017

250 0.1 2 1.941 8.4

1000 0.1 5 6.4 2.160

500 0.1 5 5.8 2.057

250 0.1 5 9.6 2.035

1000 0.1 10 6.6 2.090

500 0.1 10 5.6 2.029

250 0.1 10 8.4 2.019



Dual SVM - Tuning C

N C Gamma Folds Error (%) Time (s)

1000 0.1 1e-7 5 40.1 1.957

500 0.1 1e-7 5 47.0 1.655

250 0.1 1e-7 5 50.0 1.587

1000 1e4 1e-7 5 16.7 19.489

500 1e4 1e-7 5 28.8 6.201

250 1e4 1e-7 5 29.2 2.214

1000 1e5 1e-7 5 13.7 59.877

500 1e5 1e-7 5 22.4 12.739

250 1e5 1e-7 5 27.2 3.385

1000 1e6 1e-7 5 14.8 100.854

500 1e6 1e-7 5 22.4 20.899

250 1e6 1e-7 5 25.6 5.152

Dual SVM - Tuning Gamma

N C Gamma Folds Error (%) Time (s)

1000 1e5 1e-9 5 12.1 53.493

500 1e5 1e-9 5 20.8 23.37

250 1e5 1e-9 5 28.4 7.308

1000 1e5 1e-8 5 10.3 125.303

500 1e5 1e-8 5 15.2 44.723

250 1e5 1e-8 5 21.6 12.901

1000 1e5 1e-7 5 13.7 59.877

500 1e5 1e-7 5 22.4 12.739

250 1e5 1e-7 5 27.2 3.385

1000 1e5 1e-6 5 25.5 7.193



500 1e5 1e-6 5 37.8 2.297

250 1e5 1e-6 5 40.4 1.936

Dual SVM - Tuning (k) Folds

N C Gamma Folds Error (%) Time (s)

1000 1e5 1e-7 2 12.3 32.404

500 1e5 1e-7 2 17.0 13.847

250 1e5 1e-7 2 26.0 4.227

1000 1e5 1e-7 5 13.7 59.8777

500 1e5 1e-7 5 22.4 12.739

250 1e5 1e-7 5 27.2 3.385

1000 1e5 1e-7 10 9.4 341.265

500 1e5 1e-7 10 14.4 162.458

250 1e5 1e-7 10 22.0 29.917

Files submitted

Our zip folder submitted has the following two folders – dataset and scripts.

dataset/

1. 1000.csv
2. 500.csv
3. 250.csv

scripts/

1. getSamples.py
2. shuffleData.py
3. getData.py
4. kfoldcv.py
5. Myopicfitting.py
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